摘要:
A substrate bonding method for mutually bonding substrates, has a first radiation step for irradiating the surfaces of the individual substrates with an oxygen particle beam, a second radiation step for irradiating the surfaces of the individual substrate with a nitrogen particle beam simultaneously with or subsequently to the first radiation step, and a step for stacking the individual substrates and bringing the surfaces thereof into close contact. Particularly, the substrates which have been irradiated first with an oxygen plasma and subsequently with a nitrogen plasma are stacked and bonded.
摘要:
In a multi-layer interconnection structure, the wiring length is to be reduced, and the interconnection is to be straightened, at the same time as measures need to be taken against radiation noise. To this end, there is disclosed a semiconductor device in which plural semiconductor substrates, each carrying semiconductor elements, are bonded together. On each semiconductor substrate is deposited an insulating layer through which is formed a connection wiring passed through the insulating layer so as to be connected to the interconnection layer of the semiconductor element. On a junction surface of at least one of the semiconductor substrates is formed an electrically conductive layer of an electrically conductive material in which an opening is bored in association with the connection wiring. The semiconductor substrates are bonded together by the solid state bonding technique to interconnect the connection wirings formed on each semiconductor substrate.
摘要:
A substrate bonding apparatus includes a vacuum chamber, a surface activation part for activating respective bonding surfaces of a first substrate and a second substrate, and stage moving mechanisms for bringing the two bonding surfaces into contact with each other, to thereby bond the substrates. In order to activate the bonding surfaces in the vacuum chamber, the bonding surfaces are irradiated with a particle beam for activating the bonding surfaces, and concurrently the bonding surfaces are also irradiated with silicon particles. It is thereby possible to increase the bonding strength of the substrates.
摘要:
The present invention provides a method for firmly and inexpensively bonding at low temperature a polymer film to another polymer film or to a glass substrate without the use of an organic adhesive. A method for bonding a polymer film includes a step (S1) for forming a first inorganic material layer on part or all of a first polymer film; a step (S3) for forming a second inorganic material layer on part or all of a second polymer film; a step (S2) for surface-activating the surface of the first inorganic material layer by bombarding with particles having a predetermined kinetic energy; a step (S4) for surface-activating the surface of the second inorganic material layer by bombarding with particles having a predetermined kinetic energy; and a step (S5) for abutting the surface-activated surface of the first inorganic material layer against the surface-activated surface of the second inorganic material layer and bonding the first polymer film and second polymer film together.
摘要:
[Problem] The aim of the invention is to provide a method of sealing an electronic element such as an organic EL element using a normal temperature bonding method that enables bonding at low temperature and in which permeation of external gases such as hydrogen or oxygen through the sealed section (dam) formed by the organic material, or the junction interface of the sealed section and a cover substrate is suppressed. [Solution] A method of sealing an electronic element comprises a step of forming a sealing section by forming a sealing section including an organic material on the surface of a first substrate formed with the electronic element, surrounding this electronic element with a thickness that is larger than that of this electronic element; a step of forming a first inorganic material layer in which a first inorganic material layer is formed at least on the exposed surface of this sealing section; and a substrate bonding step of bonding the first substrate and the second substrate by pushing together the sealing section of the first substrate and the junction location of the second substrate.
摘要:
[Problem] To provide a substrate bonding technique having a wide range of application. [Solution] A silicon thin film is formed on a bonding surface, and the interface with the substrate is surface-treated using energetic particles/metal particles.
摘要:
The invention presents a fullerene derivative fine wire composed of basic component unit of fullerene derivative, being made of acicular crystal of fullerene derivative, as a fine wire showing high crystallinity and semiconductor performance.
摘要:
There are provided a semiconductor device and method for fabricating the device capable of achieving reliable electrical connection by securely directly bonding conductors to each other even though bonding surfaces are polished by a CMP method and solid-state-bonded to each other. By polishing according to the CMP method, a through hole conductor 5 and a grounding wiring layer 10, which are made of copper, become concave in a dish-like shape and lowered in level, causing a dishing portion 17 since they have a hardness lower than that of a through hole insulator 11 made of silicon nitride. The through hole insulator 11 is selectively etched by a reactive ion etching method until the through hole insulator 11 comes to have a height equal to the height of a bottom portion 19 of the dishing portion 17 of the through hole conductor 5. The through hole conductors 5 and 25 are aligned with each other, and the bonding surfaces 12 and 22 are bonded to each other in a solid state bonding manner.
摘要:
[Problem] To provide a substrate bonding technique having a wide range of application. [Solution] A silicon thin film is formed on a bonding surface, and the interface with the substrate is surface-treated using energetic particles/metal particles.
摘要:
[Problem] Provided is a technique for bonding chips efficiently onto a wafer to establish an electrical connection and raise mechanical strength between the chips and the wafer or between the chips that are chips laminated onto each other in the state that resin and other undesired residues do not remain on a bond interface therebetween.[Solution] A method for bonding plural chips each having a chip-side-bond-surface having metal regions to a substrate having plural bond portions has the step (S1) of subjecting the metal regions of the chip-side-bond-surface to surface activating treatment and hydrophilizing treatment; the step (S2) of subjecting the bond portions of the substrate to surface activating treatment and hydrophilizing treatment; the step (S3) of fitting the chips subjected to the surface activating treatment and the hydrophilizing treatment onto the corresponding bond portions of the substrate subjected to the surface activating treatment and the hydrophilizing treatment to bring the metal regions of the chips into contact with the bond portions of the substrate; and the step (S4) of heating the resultant structure, which includes the substrate, and the chips fitted onto the substrate.