摘要:
An apparatus providing improved interconnection elements and tip structures for effecting pressure connections between terminals of electronic components is described. The tip structure of the present invention has a sharpened blade oriented on the upper surface of the tip structure such that the length of the blade is substantially parallel to the direction of horizontal movement of the tip structure as the tip structure deflects across the terminal of an electronic component. In this manner, the sharpened substantially parallel oriented blade slices cleanly through any non-conductive layer(s) on the surface of the terminal and provides a reliable electrical connection between the interconnection element and the terminal of the electrical component.
摘要:
An apparatus and method providing improved interconnection elements and tip structures for effecting pressure connections between terminals of electronic components is described. The tip structure of the present invention has a sharpened blade oriented on the upper surface of the tip structure such that the length of the blade is substantially parallel to the direction of horizontal movement of the tip structure as the tip structure deflects across the terminal of an electronic component. In this manner, the sharpened substantially parallel oriented blade slices cleanly through any non-conductive layer(s) on the surface of the terminal and provides a reliable electrical connection between the interconnection element and the terminal of the electrical component.
摘要:
A method of designing and manufacturing a probe card assembly includes prefabricating one or more elements of the probe card assembly to one or more predefined designs. Thereafter, design data regarding a newly designed semiconductor device is received along with data describing the tester and testing algorithms to be used to test the semiconductor device. Using the received data, one or more of the prefabricated elements is selected. Again using the received data, one or more of the selected prefabricated elements is customized. The probe card assembly is then built using the selected and customized elements.
摘要:
A probe card assembly includes a probe card, a space transformer having resilient contact structures (probe elements) mounted directly to (i.e., without the need for additional connecting wires or the like) and extending from terminals on a surface thereof, and an interposer disposed between the space transformer and the probe card. The space transformer and interposer are “stacked up” so that the orientation of the space transformer, hence the orientation of the tips of the probe elements, can be adjusted without changing the orientation of the probe card. Suitable mechanisms for adjusting the orientation of the space transformer, and for determining what adjustments to make, are disclosed. The interposer has resilient contact structures extending from both the top and bottom surfaces thereof, and ensures that electrical connections are maintained between the space transformer and the probe card throughout the space transformer's range of adjustment, by virtue of the interposer's inherent compliance. Multiple die sites on a semiconductor wafer are readily probed using the disclosed techniques, and the probe elements can be arranged to optimize probing of an entire wafer. Composite interconnection elements having a relatively soft core overcoated by a relatively hard shell, as the resilient contact structures are described.
摘要:
A probe cleaning apparatus for cleaning a probe tip use to test semiconductors dies having an abrasive substrate layer an a tacky gel layer on top of the abrasive surface of the abrasive substrate layer. The probe tip is cleaned by passing it through the tacky gel layer so that it comes in contact with the abrasive surface of the abrasive substrate, moving the probe tip across the abrasive surface of the substrate layer, and then removing the probe tip from the successive layers of the cleaning apparatus. The probe tip emerges from the cleaning apparatus free from debris associated with testing the semiconductor dies.
摘要:
Resilient contact structures provide electrical interconnection between a semiconductor die and another electronic component. Multilayered packaging may be formed on the semiconductor die, and the resilient contact structures may be formed on portions of one or more of the layers. Heat dissipating structures may be provided on the die.
摘要:
A probe card assembly includes a probe card, a space transformer, and an interposer disposed between the space transformer and the probe card. Suitable mechanisms for adjusting the orientation of the space transformer without changing the orientation of the probe card, and for determining what adjustments to make, are disclosed.
摘要:
Microelectronic contact structures are fabricated by separately forming, then joining together, various components thereof. Each contact structure has three components: a “post” component, a “beam” component, and a “tip” component. The resulting contact structure, mounted to an electronic component, is useful for making an electrical connection with another electronic component. The post component can be, fabricated on a sacrificial substrate, joined to the electronic component and its sacrificial substrate removed. Alternatively, the post component can be formed on the electronic component. The beam and tip components can each be fabricated on a sacrificial substrate. The beam component is joined to the post component and its sacrificial substrate is removed, and the tip component is joined to the beam component and its sacrificial substrate is removed. In an embodiment of the invention, the beam components of adjacent contact structures are disposed at different heights above the electronic component, whereby at least a portion of the first beam component can overlap at least a portion of the second beam component, thereby conserving space required to accommodate the beam components on the surface of the electronic component.
摘要:
By segregating at least a substantial portion of the power connections to the space transformer component (506, 700, 800) from the signal connections thereto, constraints on the interposer component (504) may be relaxed. This is particularly advantageous in the context of probing one or more high power semiconductor components. The technique of the present invention provides for a plurality of signals (including power and ground) to be inserted into an electronic component such as a space transformer both from a one main surface thereof and an edge (periphery) thereof to an opposite main surface thereof. The space transformer includes pads (522, 706, 810) for engaging, by means of spring elements (524), component (508) to be tested and includes exposed edge pads (750, 804, 854) for engagement by a flexible cable (752) for transmission of power and ground signals to the space transformer. The system also includes an interposer (504) having resilient contacts (514, 516) for electrically interconnecting a probe card (502) to the space transformer (506).
摘要:
Resilient contact structures are mounted directly to bond pads on semiconductor dies, prior to the dies being singulated (separated) from a semiconductor wafer. This enables the semiconductor dies to be exercised (e.g., tested and/or burned-in) by connecting to the semiconductor dies with a circuit board or the like having a plurality of terminals disposed on a surface thereof. Subsequently, the semiconductor dies may be singulated from the semiconductor wafer, whereupon the same resilient contact structures can be used to effect interconnections between the semiconductor dies and other electronic components (such as wiring substrates, semiconductor packages, etc.). Using the all-metallic composite interconnection elements of the present invention as the resilient contact structures, burn-in can be performed at temperatures of at least 150.degree. C., and can be completed in less than 60 minutes.