Abstract:
Methods for die attachment of multichip and single components including flip chips may involve printing a sintering paste on a substrate or on the back side of a die. Printing may involve stencil printing, screen printing, or a dispensing process. Paste may be printed on the back side of an entire wafer prior to dicing, or on the back side of an individual die. Sintering films may also be fabricated and transferred to a wafer, die or substrate. A post-sintering step may increase throughput.
Abstract:
Substrat (1) (z.B. DBC, Stanzgitter oder Halbleiter, insbesondere Si oder SiC), das auf der Oberfläche einen ersten Bereich (2) für eine Lötverbindung für mindestens ein Bauteil (4) aufweist, wobei der erste Bereich (2) durch mindestens einen zweiten Bereich (3, 5, 6) auf der Oberfläche des Substrats (1) wenigstens teilweise begrenzt ist, wobei der mindestens eine zweite Bereich (3, 5, 6) lotmittelabweisend ist und als Lötstopp wirkt. Die Höhe des zweiten, lötmittelabweisenden Bereichs (3, 5, 6) ist größer oder kleiner als die Höhe des ersten Bereichs (2). Der zweite, lötmittelabweisende Bereich (3, 5, 6) wird durch physikalische und/oder chemische Oberflächenbehandlung erzeugt, insbesondere durch Oxidation oder Sulfidierung oder Nitrierung von Kupfer, Nickel oder Silber beinhaltenden Materialien. Nach dem Auflöten des Bauteils (4) kann das Oxid wieder entfernt werden, wodurch in den zweiten Bereichen (3, 5, 6) eine aufgeraute Fläche entsteht, an der bei einer weiteren Verarbeitung des Substrats (2) beispielsweise eine Moldmasse eine bessere Haftung findet.
Abstract:
An apparatus and a method for chip-to-wafer integration is provided. The apparatus includes a coating module, a bonding module and a cleaning module. The method includes the steps of placing at least one chip on a wafer to form an integrated product, forming a film on the integrated product, such that the integrated product is substantially fluid-tight, and exerting a predetermined positive pressure on the film during permanent bonding of the at least one chip to the wafer. The method further includes the step of removing the film from the integrated product after permanent bonding of the at least one chip to the wafer.
Abstract:
The present invention relates to a method for bonding a first contact area (3) of a first, at least predominantly transparent substrate (1) to a second contact area (4) of a second, at least predominantly transparent substrate (2) wherein an oxide is used at at least one of the contact areas for bonding, from which oxide an at least predominantly transparent connecting layer (14) having: an electrical conductivity of at least 10e1 S/cm2 (measurement: four-point method, relative to temperature of 300K) and an optical transmittance of greater than 0.8 (for a wavelength range of 400 nm to 1500 nm) is formed at the first and second contact areas (3 4).
Abstract translation:本发明涉及一种接合第一接触表面的方法(3)的第一,至少基本上透明的基板(1)具有第二接触表面(4)的第二的,至少基本上透明的基板(2),其中,所述用于接合的接触表面的至少一个 使用氧化物,从其中至少主要透明粘接层(14),包括:至少10E1 S / cm 2的导电性(测量:四点基于的300K温度的方法),和光透射比大于0.8(为一个波长范围内的 400纳米至1500纳米)形成在第一和第二接触表面(3,4)上。
Abstract:
Disclosed herein is a method of assembling an array of light emitting diode (LED) dies on a substrate comprising : positioning dies in fluid; exposing the dies to a magnetic force to attract the dies onto magnets that are arranged at pre-determined locations either on or near the substrate; and forming permanent connections between the dies and the substrate thereby constituting an array of LED dies on a substrate.
Abstract:
The present invention relates to a semiconductor chip stack package and a manufacturing method thereof, and more particularly, to a semiconductor chip stack package and a manufacturing method thereof in which a plurality of chips can be rapidly arranged and bonded without a precise device or operation so as to improve productivity.
Abstract:
A method of producing an electronic module with at least one electronic component and one carrier has the following steps: a structure is provided on the carrier, the structure being suitable for aligning an electronic component on it, so that the electronic component can take a desired target position relative to the structure, the structure is coated with a material to form a liquid meniscus, the liquid meniscus being suitable for receiving the electronic component at least partially, a stock of multiple electronic components is provided at a delivery point for the electronic components, the carrier, with the structure, is moved at least to nearby opposite the delivery point, the delivery point delivers one of the electronic components without contact, while the structure on the carrier is moving past near the delivery point, so that after a phase of free movement the electronic component at least partly touches the material, and the carrier, with the structure, is moved to a downstream processing point, while the electronic component aligns itself to the structure on the liquid meniscus, and takes its target position.