摘要:
While the supply of power is stopped, a data signal that has been held in a volatile memory section can be held in a nonvolatile memory section. In the nonvolatile memory section, a transistor having an extremely low off-state current allows a data signal to be held in the capacitor for a long period of time. Thus, the nonvolatile memory section can hold the logic state even while the supply of power is stopped. When the supply of power is started again, the data signal that has been held in the capacitor while the supply of power has been stopped is set at such a potential that malfunction does not occur by turning on the reset circuit.
摘要:
A signal processing circuit using a nonvolatile memory circuit with a novel structure is provided. The nonvolatile memory circuit is formed using a transistor including an oxide semiconductor and a capacitor connected to one of a source electrode and a drain electrode of the transistor. A high-level potential is written to the memory circuit in advance, and this state is kept in the case where data to be saved has a high-level potential, whereas a low-level potential is written to the memory circuit in the case where data to be saved has a low-level potential. Thus, a signal processing circuit with improved writing speed can be provided.
摘要:
Provided is a semiconductor integrated circuit according to an exemplary aspect of the present invention including a data transmitting circuit and a data receiving circuit that receives data transmitted from the data transmitting circuit. The data transmitting circuit includes a data output circuit that outputs the data or sets an output to a high impedance state, and a control circuit that outputs a control signal to the data output circuit so that the data output circuit outputs the data when the data transmitting circuit transmits the data, and the data output circuit keeps outputting data last output in the previous data transmission, during a predetermined period after the previous data transmission when the data transmitting circuit further transmits another data after transmitting the data.
摘要:
The present disclosure includes methods, and circuits, for operating a memory device. One method embodiment for operating a memory device includes controlling data transfer through a memory interface in an asynchronous mode by writing data to the memory device at least partially in response to a write enable signal on a first interface contact, and reading data from the memory device at least partially in response to a read enable signal on a second interface contact. The method further includes controlling data transfer in a synchronous mode by transferring data at least partially in response to a clock signal on the first interface contact, and providing a bidirectional data strobe signal on an interface contact not utilized in the asynchronous mode.
摘要:
An object is to provide a signal processing circuit which can be manufactured without a complex manufacturing process and suppress power consumption. A storage element includes two logic elements (referred to as a first phase-inversion element and a second phase-inversion element) which invert a phase of an input signal and output the signal, a first selection transistor, and a second selection transistor. In the storage element, two pairs each having a transistor in which a channel is formed in an oxide semiconductor layer and a capacitor (a pair of a first transistor and a first capacitor, and a pair of a second transistor and a second capacitor) are provided. The storage element is used in a storage device such as a register or a cache memory included in a signal processing circuit.
摘要:
A memory system having memory components, a remote direct memory access (RDMA) network interface card (RNIC), and a host system, and configured to: allocate a page of virtual memory for an application; map the page of virtual memory to a page of physical memory in the memory components; instruct the RNIC to perform an RDMA operation; perform, during the RDMA operation, a data transfer between the page of physical memory in the plurality of memory components and a remote device that is connected via a computer network to the remote direct memory access network interface card; and at least for a duration of the data transfer, lock a mapping between the page of virtual memory and the page of physical memory in the memory components.
摘要:
Disclosed herein are techniques for implementing high-throughput low-latency hybrid memory modules with improved data backup and restore throughput, enhanced non-volatile memory controller (NVC) resource access, and enhanced mode register setting programmability. Embodiments comprise a command replicator to generate sequences of one or more DRAM read and/or write and/or other commands to be executed in response to certain local commands from a non-volatile memory controller (NVC) during data backup and data restore operations. Other embodiments comprise an access engine to enable an NVC in a host control mode to trigger entry into a special mode and issue commands to access a protected register space. Some embodiments comprise a mode register controller to capture and store the data comprising mode register setting commands issued during a host control mode, such that an NVC can program the DRAM mode registers in an NVC control mode.
摘要:
Embodiments are generally directed apparatuses, methods, techniques and so forth to select two or more processing units of the plurality of processing units to process a workload, and configure a circuit switch to link the two or more processing units to process the workload, the two or more processing units each linked to each other via paths of communication and the circuit switch.
摘要:
Technologies for adaptive processing of multiple buffers is disclosed. A compute device may establish a buffer queue to which applications can submit buffers to be processed, such as by hashing the submitted buffers. The compute device monitors the buffer queue and determines an efficient way of processing the buffer queue based on the number of buffers present. The compute device may process the buffers serially with a single processor core of the compute device or may process the buffers in parallel with single-instruction, multiple data (SIMD) instructions. The compute device may determine which method to use based on a comparison of the throughput of serially processing the buffers as compared to parallel processing the buffers, which may depend on the number of buffers in the buffer queue.
摘要:
Disclosed is a memory package. The memory package includes a nonvolatile memory chip, a volatile memory chip of which an access speed is faster than an access speed of the nonvolatile memory chip, and a logic chip for performing a refresh operation about the volatile memory chip in response to a refresh command from an external device, and migrating at least a portion of data stored in the nonvolatile memory chip to the volatile memory chip when the refresh operation is performed.