摘要:
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
摘要:
Hybrid bonding systems and methods for semiconductor wafers are disclosed. In one embodiment, a hybrid bonding system for semiconductor wafers includes a chamber and a plurality of sub-chambers disposed within the chamber. A robotics handler is disposed within the chamber that is adapted to move a plurality of semiconductor wafers within the chamber between the plurality of sub-chambers. The plurality of sub-chambers includes a first sub-chamber adapted to remove a protection layer from the plurality of semiconductor wafers, and a second sub-chamber adapted to activate top surfaces of the plurality of semiconductor wafers prior to hybrid bonding the plurality of semiconductor wafers together. The plurality of sub-chambers also includes a third sub-chamber adapted to align the plurality of semiconductor wafers and hybrid bond the plurality of semiconductor wafers together.
摘要:
Alignment systems, and wafer bonding alignment systems and methods are disclosed. In some embodiments, an alignment system for a wafer bonding system includes means for monitoring an alignment of a first wafer and a second wafer, and means for adjusting a position of the second wafer. The alignment system includes means for feeding back a relative position of the first wafer and the second wafer to the means for adjusting the position of the second wafer before and during a bonding process for the first wafer and the second wafer.
摘要:
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
摘要:
A semiconductor device has a plurality of small-sized semiconductor chips disposed between an insulated circuit board having a conductive pattern and a terminal. The semiconductor device exhibits a high accuracy in positioning the semiconductor chips. The semiconductor device includes an insulated circuit board having a conductive pattern, a first semiconductor chip with a rectangular shape connected to the conductive pattern through a first joining material, a second semiconductor chip with a rectangular shape, disposed on the conductive pattern separated from the first semiconductor chip and connected to the conductive pattern through a second joining material, and a terminal disposed above the first semiconductor chip and the second semiconductor chip, connected to the first semiconductor chip through a third joining material, and connected to the second semiconductor chip through a fourth joining material. The terminal has a through-hole above a place between the first semiconductor chip and the second semiconductor chip.
摘要:
A method embodiment includes patterning an opening through a layer at a surface of a device die. The method further includes forming a liner on sidewalls of the opening, patterning the device die to extend the opening further into the device die. After patterning the device die, the liner is removed. A conductive pad is formed in the device die by filling the opening with a conductive material.
摘要:
Methods of fabricating semiconductor structures include implanting atom species into a carrier die or wafer to form a weakened region within the carrier die or wafer, and bonding the carrier die or wafer to a semiconductor structure. The semiconductor structure may be processed while using the carrier die or wafer to handle the semiconductor structure. The semiconductor structure may be bonded to another semiconductor structure, and the carrier die or wafer may be divided along the weakened region therein. Bonded semiconductor structures are fabricated using such methods.
摘要:
A method includes performing a hybrid bonding to bond a first package component to a second package component, so that a bonded pair is formed. In the bonded pair, first metal pads in the first package component are bonded to second metal pads in the second package component, and a first surface dielectric layer at a surface of the first package component is bonded to a second surface dielectric layer at a surface of the second package component. After the hybrid bonding, a thermal compressive annealing is performed on the bonded pair.
摘要:
Embodiments of the present invention include methods of directly bonding together semiconductor structures. In some embodiments, a cap layer may be provided at an interface between directly bonded metal features of the semiconductor structures. In some embodiments, impurities are provided within the directly bonded metal features of the semiconductor structures. Bonded semiconductor structures are formed using such methods.
摘要:
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.