Abstract:
A method for manufacturing a chip package is provided. The method includes: forming an electrically insulating material over a chip side; selectively removing at least part of the electrically insulating material thereby forming a trench in the electrically insulating material, depositing electrically conductive material in the trench wherein the electrically conductive material is electrically connected to at least one contact pad formed over the chip side; forming an electrically conductive structure over the electrically insulating material, wherein at least part of the electrically conductive structure is in direct physical and electrical connection with the electrically conductive material; and depositing a joining structure over the electrically conductive structure.
Abstract:
Provided is a semiconductor device having a pad on a semiconductor chip, a first passivation film formed over the semiconductor chip and having an opening portion on the pad of a probe region and a coupling region, a second passivation film formed over the pad and the first passivation film and having an opening portion on the pad of the coupling region, and a rewiring layer formed over the coupling region and the second passivation film and electrically coupled to the pad. The pad of the probe region placed on the periphery side of the semiconductor chip relative to the coupling region has a probe mark and the rewiring layer extends from the coupling region to the center side of the semiconductor chip. The present invention provides a technology capable of achieving size reduction, particularly pitch narrowing, of a semiconductor device.
Abstract:
A device includes a top dielectric layer having a top surface. A metal pillar has a portion over the top surface of the top dielectric layer. A non-wetting layer is formed on a sidewall of the metal pillar, wherein the non-wetting layer is not wettable to the molten solder. A solder region is disposed over and electrically coupled to the metal pillar.
Abstract:
Disclosed herein is a joining electrode including: an insulating layer; a recessed portion formed in the insulating layer; a covering layer formed on a side surface and a bottom surface of the recessed portion; and a joining metallic layer formed on the covering layer and having an upper surface protruding from a surface of the insulating layer.
Abstract:
A circuit structure includes a semiconductor substrate, first and second metallic posts over the semiconductor substrate, an insulating layer over the semiconductor substrate and covering the first and second metallic posts, first and second bumps over the first and second metallic posts or over the insulating layer. The first and second metallic posts have a height of between 20 and 300 microns, with the ratio of the maximum horizontal dimension thereof to the height thereof being less than 4. The distance between the center of the first bump and the center of the second bump is between 10 and 250 microns.
Abstract:
Provided is a method of fabricating a semiconductor device. The method includes forming a photoresist pattern having a side recess on a seed metal layer and forming a plating layer having a hem using a plating process to fill the side recess.
Abstract:
A semiconductor device comprises a semiconductor substrate, an under-bump metallization (UBM) structure overlying the semiconductor substrate, and a solder bump overlying and electrically connected to the UBM structure. The UBM structure comprises a first metallization layer comprising a first metal, a second metallization layer comprising a second metal different from the first metal, and a first intermetallic compound (IMC) layer between the first metallization layer and the second metallization layer, the first IMC layer comprising the first metal and the second metal.
Abstract:
In accordance with an embodiment of the present invention, a semiconductor package includes a substrate having a first major surface and an opposite second major surface. A first chip is disposed in the substrate. The first chip includes a plurality of contact pads at the first major surface. A via bar is disposed in the substrate. An antenna structure is disposed within the via bar.
Abstract:
An integrated circuit structure includes one or more external contact pads with decoupling capacitors, such as metal-insulator-metal (MIM) capacitors, formed directly thereunder. In an embodiment, the decoupling capacitors are formed below the first metallization layer, and in another embodiment, the decoupling capacitors are formed in the uppermost inter-metal dielectric layer. A bottom plate of the decoupling capacitors is electrically coupled to one of Vdd and Vss, and the top plate of the decoupling capacitors is electrically coupled to the other. The decoupling capacitors may include an array of decoupling capacitors formed under the external contact pads and may include one or more dummy decoupling capacitors. The one or more dummy decoupling capacitors are MIM capacitors in which at least one of the top plate and the bottom plate is not electrically coupled to an external contact pad.
Abstract:
Sidewall protection processes are provided for Cu pillar bump technology, in which a protection structure on the sidewalls of the Cu pillar bump is formed of at least one of non-metal material layers, for example a dielectric material layer, a polymer material layer, or combinations thereof.