Abstract:
In some embodiments, to increase the height-to-pitch ratio of a solder connection that connects different structures with one or more solder balls, only a portion of a solder ball's surface is melted when the connection is formed on one structure and/or when the connection is being attached to another structure. In some embodiments, non-solder balls are joined by an intermediate solder ball (140i). A solder connection may be surrounded by a solder locking layer (1210) and may be recessed in a hole (1230) in that layer. Other features are also provided.
Abstract:
A microelectronic structure includes a semiconductor having conductive elements at a first surface. Wire bonds have bases joined to the conductive elements and free ends remote from the bases, the free ends being remote from the substrate and the bases and including end surfaces. The wire bonds define edge surfaces between the bases and end surfaces thereof. A compliant material layer extends along the edge surfaces within first portions of the wire bonds at least adjacent the bases thereof and fills spaces between the first portions of the wire bonds such that the first portions of the wire bonds are separated from one another by the compliant material layer. Second portions of the wire bonds are defined by the end surfaces and portions of the edge surfaces adjacent the end surfaces that are extend from a third surface of the compliant later.
Abstract:
A semiconductor device whose package size is nearly the same as the size of a chip, which has a stress absorbing layer, which does not require a flexible substrate, and which can be manufactured in a large number at the same time. A method for manufacturing a semiconductor device includes a process wherein electrodes (12) are formed on a wafer (10), a process wherein a resin layer (14) is formed as a stress reducing layer on the wafer (10) except for the parts where the electrodes (12) are formed, a process wherein a chrome layer (16) is formed as an interconnect on the whole surface of the wafer (10) including the electrodes (12) and the resin layer (14), a process wherein solder balls are formed as external electrodes on parts of the chrome layer (16) which are formed on the resin layer (14), and a process wherein the wafer (10) is diced to semiconductor chips. In the processes for forming the chrome layer (16) and for forming the solder balls, a metal thin film deposition technology used in the wafer process of semiconductor manufacturing is employed.
Abstract:
Two metallization schemes of PtSi/TiW/TiW(N)/Au (Type I) and PtSi/TiW/TiW(N)/TiW/Au (Type II) and associated process are described for microcircuit interconnections. The metallization schemes and process are capable of IC-interconnections with a metal-pitch as small as 1.5 mu m, or even smaller. The metallization schemes are reliable for continuous high temperature and high current operations.
Abstract:
In some embodiments, to increase the height-to-pitch ratio of a solder connection that connects different structures with one or more solder balls, only a portion (510) of a solder ball's (140) surface is melted when the connection is formed on one structure (110) and/or when the connection is being attached to another structure (HOB). The structure (110) may be an integrated circuit, an interposer, a rigid or flexible wiring substrate, a printed circuit board, some other packaging substrate, or an integrated circuit package. In some embodiments, solder balls (140.1, 140.2) are joined by an intermediate solder ball (140i), upon melting of the latter only. Any of the solder balls (140, 140i) may have a non-solder central core (140C) coated by solder shell (140S). Some of the molten or softened solder may be squeezed out, to form a "squeeze-out" region (520, 520A, 520B, 520.1, 520.2). In some embodiments, a solder connection (210) such as discussed above, on a structure (110A), may be surrounded by a dielectric layer (1210), and may be recessed in a hole (1230) in that layer (1210), to help in aligning a post (1240) of a structure (HOB) with the connection (210) during attachment of the structures (110A, HOB). The dielectric layer (1210) may be formed by moulding. The dielectric layer may comprise a number of layers (1210.1, 1210.2), "shaved" (partially removed) to expose the solder connection (210). Alternatively, the recessed solder connections (210) may be formed using a sublimating or vapourisable material (1250), placed on top of the solder (210) before formation of the dielectric layer (1210) or coating solder balls (140); in the latter case, the solder (140C) sinks within the dielectric material (1210) upon removal of the material (1250) and subsequent reflow. In some embodiments, the solder connections (210) may also be formed in openings (2220) in a dielectric layer (2210) (photoimageable polymer or inorganic) by solder paste printing and/or solder ball jet placement followed by reflow to let the solder sink to the bottom of the openings (2220), with possible repetition of the process and possible use of different solders in the different steps. The solder connections (210, 210.1, 210.2) may be used for bonding one or more structures (HOB, HOC) (e.g. an integrated circuit die or wafer, a packaging substrate or a package) to a structure (110A) (a wiring substrate) on which a die (HOB) is flip-chip connected. The solder connections (210, 210.1, 210.2) may differ from each other, in particular in height, which can be used for attaching a structure (HOB) with posts (1240) of different heights or for attaching two structures (HOB, HOC) in the case of a stepped form of the dielectric layer, one of the structures (HOC) being possibly placed higher than the other structure (HOB). In some embodiments, the structure (HOA) may be removed after bonding to the structures (HOB, HOC) and a redistribution layer (3210) may be formed to provide connecting lines (3220) connecting the solder connections (210) to contact pads (120R) and possibly interconnecting between the solder connections (210) and/or between the contact pads (120R).
Abstract:
A microelectronic structure includes a semiconductor having conductive elements at a first surface. Wire bonds have bases joined to the conductive elements and free ends remote from the bases, the free ends being remote from the substrate and the bases and including end surfaces. The wire bonds define edge surfaces between the bases and end surfaces thereof. A compliant material layer extends along the edge surfaces within first portions of the wire bonds at least adjacent the bases thereof and fills spaces between the first portions of the wire bonds such that the first portions of the wire bonds are separated from one another by the compliant material layer. Second portions of the wire bonds are defined by the end surfaces and portions of the edge surfaces adjacent the end surfaces that are extend from a third surface of the compliant later.
Abstract:
Methods of fabricating interconnect structures for semiconductor dice comprise forming conductive elements in contact with bond pads on an active surface over a full pillar diameter of the conductive elements, followed by application of a photodefinable material comprising a photoresist to the active surface and over the conductive elements. The polyimide material is selectively exposed and developed to remove photodefinable material covering at least tops of the conductive elements. Semiconductor dice and semiconductor die assemblies are also disclosed.
Abstract:
Electronic assemblies and their manufacture are described. One embodiment relates to a method including depositing an organic thin film layer on metal bumps on a semiconductor wafer, the organic thin film layer also being formed on a surface adjacent to the metal bumps on the wafer. The wafer is diced into a plurality of semiconductor die structures, the die structures including the organic thin film layer. The semiconductor die structures are attached to substrates, wherein the attaching includes forming a solder bond between the metal bumps on a die structure and bonding pads on a substrate, and wherein the solder bond extends through the organic thin film layer. The organic thin film layer is then exposed to a plasma. Other embodiments are described and claimed.
Abstract:
An embodiment of a method of forming a semiconductor device that includes a substrate (202) having an active layer (204) and interconnect (206) formed on the active layer is described. The method includes: forming a dielectric layer (210) above the interconnect (206) having a tapered via (604) exposing at least a portion of a first metal layer (216); forming an under-bump metallization (UBM) layer (218) over the tapered via and the first metal layer to form a UBM bucket (606); and forming a dielectric cap layer (212) over the dielectric layer and a portion of the UBM layer. The UBM bucket is configured to support a solder ball (214) and can advantageously block all alpha particles emitted by the solder ball having a relevant angle of incidence from reaching the active semiconductor regions of the IC. Thus, soft errors, such as single event upsets in memory cells, are reduced or eliminated.