摘要:
A manufacturing method for a mounting structure of a semiconductor package component, including: applying a first adhesive with viscosity η1 and a thixotropy index T1 at a position on the substrate, which is on an outer side of the mounted semiconductor package component; applying, on the first adhesive, a second adhesive with viscosity η2 and a thixotropy index T2 so that the second adhesive gets in contact with an outer periphery part of the semiconductor package component; and forming, through a subsequent reflow process, a first adhesive part of the hardened first adhesive and a second adhesive part of the hardened second adhesive, wherein the first and second adhesives satisfy 30≦η2≦η1≦300 (Pa·s) and 3≦T2≦T1≦7, and sectional area S1 of the first adhesive part and sectional area S2 of the second adhesive part with respect to a direction perpendicular to a mounting surface of the substrate satisfy a relation S1≦S2.
摘要:
A semiconductor module of the present invention comprises a first conductive layer (film) and a second conductive layer (film) which are separately formed on the main surface of a packed substrate, a thermal diffusion plate connected by solder to the upper surface of the first conductive layer, a semiconductor element connected by solder to the upper surface of the thermal diffusion plate, and a lead having one end connected by solder to the second conductive layer and the other end connected by solder to the semiconductor element, wherein the outer periphery of the connected region where the semiconductor element is connected by solder to the upper surface of the thermal diffusion plate is formed with protrusion parts protruding up from the connecting region and a turning of the semiconductor element in the upper surface of the thermal diffusion plate in the solder connecting process is suppressed by the protrusion parts.
摘要:
To provide a semiconductor module that has high reliability of electric connection by a solder and is inexpensive. A joint surface of an electrode jointing portion that is opposed to a surface to be jointed of a gate electrode of a bare-chip FET and a joint surface of a substrate jointing portion that is opposed to a surface to be jointed of another wiring pattern include an outgas releasing mechanism that makes outgas generated from a molten solder during solder jointing of a metal plate connector be released from solders interposed between the joint surfaces and the surfaces to be jointed.
摘要:
The invention relates to a flip-chip assembly process for connecting two microelectronic components (1, 2) to each other. According to the invention, it is possible either to proportion the spacers (24) so that they are smaller than the interconnect bumps (22) or to oversize the latter so that their deformation, after having been plastic during the insertion of connective inserts (12), returns to the elastic regime once assembly contact between components (1,2) has been reached. Thanks to the invention, it is possible to control with great precision the gap between the two components during their assembly, and this without adding any additional steps to their manufacturing or to the assembly process.
摘要:
A method for fabricating a vertical gallium nitride (GaN) power device can include providing a GaN substrate with a top surface and a bottom surface, forming a device layer coupled to the top surface of the GaN substrate, and forming a metal contact on a top surface of the vertical GaN power device. The method can further include forming a backside metal by forming an adhesion layer coupled to the bottom surface of the GaN substrate, forming a diffusion barrier coupled to the adhesion layer, and forming a protection layer coupled to the diffusion barrier. The vertical GaN power device can be configured to conduct electricity between the metal contact and the backside metal.
摘要:
A semiconductor device includes a chip package including plurality of stacked semiconductor chips, a sealing layer covering at least an upper surface of the chip package, a plurality of first conductive elements disposed on the chip package and exposed on an upper surface of the sealing layer, and a plurality of second conductive elements, each being disposed on one of the exposed surfaces of the first conductive elements.
摘要:
To provide a semiconductor module capable of shortening of the manufacturing tact time, reducing the manufacturing costs, and improving assembility. A semiconductor module (30) includes substrate (31) made of metal, an insulating layer (32) formed on the substrate (31), a plurality of wiring patterns (33a to 33d) formed on the insulating layer (32), a bare-chip transistor (35) mounted on a wiring pattern (33a) via a solder (34a); and a metal plate connector (36a, 36b) jointing an electrode (S, G) of the bare-chip transistor (35) and a wiring pattern (33b, 33c) via a solder (34b, 34c). The metal plate connector (36a, 36b) has a bridge shape, and has a flat surface and a center of gravity at a middle portion of the component.
摘要:
A novel chip scale diode package due to no containing outer lead pins is miniaturized like a chip scale appearance to promote dimensional accuracy so that the diode package is so suitably produced by automation equipment to get automated mass production; the produced diode package may contain one or more diode chips to increase versatile functions more useful in applications, such as produced as a SMT diode package or an array-type SMT diode, and the present diode package due to made of no lead-containing material conforms to requirements for environmental protection.
摘要:
A semiconductor device includes a substrate, a substrate-side electrode layer, an intermediate electrode layer, and a front-side electrode layer. The substrate includes a semiconductor layer and a projection portion, the projection portion being formed on a surface of the semiconductor layer. The substrate-side electrode layer is provided on the projection portion. The intermediate electrode layer extends from on a part of the substrate-side electrode layer, which part of the substrate-side electrode layer is located on the projection portion, to just above a region of the substrate in which region the projection portion is not provided. The front-side electrode layer is provided on a surface of the intermediate electrode layer. A Young's modulus E1 of the substrate-side electrode layer, a Young's modulus E2 of the intermediate electrode layer, and a Young's modulus E3 of the front-side electrode layer satisfy a relationship of E3>E1>E2.
摘要:
A method includes providing a semiconductor chip having a first main surface and a second main surface. A semiconductor chip is placed on a carrier with the first main surface of the semiconductor chip facing the carrier. A first layer of solder material is provided between the first main surface and the carrier. A contact clip including a first contact area is placed on the semiconductor chip with the first contact area facing the second main surface of the semiconductor chip. A second layer of solder material is provided between the first contact area and the second main surface. Thereafter, heat is applied to the first and second layers of solder material to form diffusion solder bonds between the carrier, the semiconductor chip and the contact clip.